Узаконивание после перепланировки 3 х комнатной квартиры

Ученые впервые извлекли ДНК насекомых из смолы Новый метод позволил успешно извлечь генетический материал насекомых из кусочков смолы возрастом шесть лет и два года. Ученые впервые извлекли ДНК насекомых из смолы 30.09.2020 Научный обозреватель В будущем его собираются использовать на древних образцах, чтобы узнать больше о вымерших видах. Учёные впервые достоверно успешно извлекли ДНК насекомых из древесной смолы . 9 октября +7 926 604 54 63 address. Этому образцу, описанному Джорджем Пойнаром (George Poinar) и Алексом И. ... Ученые впервые извлекли ДНК насекомого, застрявшего в смоле. Ученые успешно извлекли ДНК насекомых, застывших в смоле. Результаты были опубликованы в научном журнале PLOS One. Новый метод позволил успешно извлечь генетический материал насекомых из кусочков смолы возрастом шесть лет и два года. В будущем его собираются использовать на древних образцах, чтобы узнать больше о вымерших видах. Ученым удалось извлечь ДНК из смолы, застывшей от двух до шести лет Все подробности на сайте imag.one Ученые впервые извлекли ДНК насекомых из смолы Последние новости Ученые обнаружили возможный механизм переключения патологии мозга от тревоги к депрессии... 12:20 30.09 Ученые впервые извлекли ДНК насекомых из смолы... 12:20 30.09 Ученые впервые извлекли ДНК насекомых из смолы ДНК, генетические исследования Новый метод позволил успешно извлечь генетический материал насекомых из кусочков смолы возрастом шесть лет ... звлечь генетический материал насекомых из кусочков смолы возрастом шесть лет и два года. В будущем его собираются использовать на древних образцах, Ученые впервые извлекли ДНК насекомых из смолы. Поделиться. Ученым удалось извлечь ДНК из смолы, застывшей ...

2020.09.30 20:42 postmaster_ru Ученые впервые извлекли ДНК насекомых из смолы

Ученые впервые извлекли ДНК насекомых из смолы Новый метод позволил успешно извлечь генетический материал насекомых из кусочков смолы возрастом шесть лет и два года. В будущем его собираются использовать на древних образцах, чтобы узнать больше о вымерших видах.
Собранные образцы смолы / © Девид Пэрис
Группа европейских исследователей изучила фрагменты янтаря, собранные на Мадагаскаре во время экспедиций в 2013 и 2017 годах, чтобы выяснить, как сохраняется генетический материал застывших в нем долгоносиков. Они тщательно промыли, дабы случайно не запачкать материал, и измельчили кубики смолы с пойманными в них насекомыми, а затем извлекли ДНК. Подробности опытов опубликованы в журнале PLOS One.
Отмечается, что ученые провели два эксперимента: основной — с янтарем, который до начала исследования хранился при комнатной температуре, а также контрольный — с образцами, собранными в 2012 году (сразу после обнаружения их поместили в раствор этанола при температуре минус 20 градусов Цельсия, что защищало ДНК от разрушения).
Результаты показали, что метод полимеразной цепной реакции позволяет выделить генетический материал насекомых из относительно свежей смолы (образцам было шесть лет и два года). При этом концентрация извлеченной ДНК между свежими и более старыми образцами была разной, а также сильно падала, если во время опытов смолу растворяли в хлороформе.
До сих пор аналогичные исследования застывших в янтаре насекомых (возрастом несколько миллионов лет) и каменноугольной смоле (возрастом несколько тысяч лет) не давали точных результатов. Слишком продолжительное воздействие окружающей среды и сильное загрязнение, как правило, меняли или разрушали материал, поэтому такие образцы признавали непригодными для генетических исследований. Но авторам нового исследования, говорят они сами, впервые удалось доказать, что ДНК, хотя она и крайне хрупкая, реально сохранить в смоле, а значит, можно и изучать геном застывших в ней насекомых.
По словам ученых, идея извлечь ДНК из янтаря напомнила им о фильме «Парк юрского периода». «Однако мы не собираемся разводить динозавров, — сказала доктор Моника Солорзано-Кремер из Научно-исследовательского института Сенкенберга и Музея естественной истории в Германии. — Наше исследование — попытка понять, как долго может сохраняться ДНК насекомых в янтаре.
В будущем команда собирается продолжать эксперименты на более старых образцах — возрастом от нескольких тысяч до миллионов лет, — чтобы выяснить «срок годности» ДНК. «Эксперименты показали, что жидкость в застывших насекомых сохраняется дольше, чем предполагалось ранее, и это может влиять на качество и стабильность материала. Поэтому я предполагаю, что вероятность извлечь функциональную ДНК из самых древних образцов крайне мала», — добавила Солорзано-Кремер.
Источник
submitted by postmaster_ru to Popular_Science_Ru [link] [comments]


2020.08.30 22:22 postmaster_ru Узаконивание после перепланировки 3 х комнатной квартиры

Наше квантовое будущее. Квантовый компьютер. Как можно сломать мировую финансовую систему? Когда вычисления станут быстрее в триллионы раз? Можно ли избавиться от хакеров навсегда? Ученые рассказали об этом каналу «Наука».
https://preview.redd.it/glqorn62t7k51.jpg?width=848&format=pjpg&auto=webp&s=dc197e57138862e6af0e8708fef6495cb4033bc1
«Квантовое превосходство», «квантово-информационная атомная бомба», «квантовый телефон» — научпоп-ресурсы все чаще используют подобные словосочетания. Появляются пугающие прогнозы: «Квантовый компьютер может уничтожить всю современную банковскую систему!» То есть, с одной стороны, вроде бы «превосходство, новый мощный компьютер», а с другой — «бомба и угроза». Давайте разберемся, что это за явление.
Квантовый компьютер взломает все? Каждый из нас, кто хоть раз держал в руках смартфон и снимал деньги в банкомате, использовал технологии современной криптографии. Криптография — это наука о шифровании данных, или, в более широком смысле, об обеспечении конфиденциальности.
Мы привыкли, что наши секретные действия в глобальном электронном мире защищены паролями. Но пароли нельзя пересылать в открытом виде, иначе они станут достоянием злоумышленников. Поэтому они, конечно, тоже шифруются. Как можно обменяться по открытому каналу закрытыми данными? Для этого компьютеры отправителя и адресата несколько раз обмениваются служебными сообщениями и создают некий ключ, который виден в Сети всем, но корректно воспользоваться им могут лишь участники переписки. В большинстве случаев для этого используют такие математические действия, над которыми в одном направлении надо думать очень долго, а в другом они решаются почти моментально.
Например, разложение на множители и умножение. Попробуйте разложить на множители число 91. Не так-то это просто, верно? А вот если вы умножаете 7 на 13, то это быстро и просто.
Обычный электронный компьютер так же, как человеческий мозг, легко перемножит два числа, а вот чтобы разложить на множители составное число — по-научному это называется «факторизация», — ему придется работать очень долго. Именно эта идея положена в основу защиты секретной переписки в интернете, электронного общения с банками и других тайных дел, которые вы доверяете Всемирной сети.
«Если мы сделаем 300-значное число, то какой-нибудь мощный компьютер будет факторизовать его за время, сравнимое со времени жизни Вселенной. Вот и отлично! Можно на этом деле основывать систему шифрования», — объясняет Вадим Родимин, ведущий научный сотрудник группы квантовых коммуникаций Российского квантового центра.
Но трудно — не значит невозможно! В квантовом компьютере есть ряд интересных методов, как решать эти задачи быстрее. В недалеком будущем его создатели рассчитывают ускорить математические операции, и тогда разложить на множители 300-значное число станет возможно за минуты. В таком случае злоумышленникам не составит труда лишить вас сбережений за несколько минут через взлом сетевого банкинга.
«Вы не понимаете квантовую теорию» Это не значит, что квантовый компьютер гораздо мощнее обычного. Он просто другой. Квантовый мир полон неоднозначностей, для которых наш опыт не дает аналогов. Недаром создатель квантовой электродинамики, нобелевский лауреат Ричард Фейнман говорил: «Если вам кажется, что вы понимаете квантовую теорию, то вы не понимаете квантовую теорию».
Основу квантового компьютера составляют частицы, у которых тоже не все однозначно. Логический элемент обычного компьютера — это бит, и он может иметь только два значения: ноль и один. Логическим элементом квантового компьютера тоже является бит, но в нем есть неоднозначность. Он может одновременно иметь значение как нуля, так и единицы. И показать на выходе одно или другое с некоторой вероятностью. Поэтому его называют кубит — квантовый бит. Способность случайным образом проявить одно состояние из нескольких называется в квантовой физике суперпозицией.
Вернемся к вашей банковской безопасности. Обычному компьютеру, чтобы разложить на множители ваш ключ — очень большое число — и таким образом подделать ваше общение с банком, надо раз за разом пробовать новые варианты. Но если возможных делителей гугол (1 и сто нулей), он будет этим заниматься, пока жива Вселенная. В квантовый компьютер можно загрузить в виде суперпозиции сразу все возможности разложить на множители ваш ключ. Результат будет получен всего в несколько операций, и этого как раз жаждут взломщики.
Фото: Boykov / Shutterstock.com
«Количество этих операций очень небольшое — в пределах тысячи команд. Этого достаточно. Квантовый мир богат, и, выполняя вот это небольшое количество команд, можно получать результаты, которые представляют определенный интерес», — объясняет Алексей Рубцов, руководитель научной группы Российского квантового центра, профессор МГУ, профессор РАН.
Квантовый компьютер пригодится для решения любых задач, где привычная электроника пасует перед оценкой огромного количества вариантов, которые нужно перебирать один за другим. И криптографический анализ — далеко не главное.
«Задачи логистики, задачи оптимизации тех или иных технологических процессов, задачи поиска новых материалов для аккумуляторов, задачи поиска новых катализаторов для химической промышленности — вот это то, где даже небольшой прогресс, достигнутый с помощью квантовых вычислителей, немедленно приведет к заметным и значимым экономическим выгодам, — рассказывает Алексей Рубцов. — Квантовая система — это суперпозиция, одновременно присутствие многих классических систем. То, что на уровне законов природы может параллельно выполнять одни и те же действия, например, для разных входных данных. Именно это нужно для оптимизации».
Неоднозначность квантового мира Квантовый компьютер, скорее всего, ничего не будет считать в привычном для нас смысле этого слова. Возьмем классический пример с коммивояжером, которому нужно составить оптимальный маршрут посещения какого-то количества городов. Координаты всех точек назначения записываются в кубиты — в качестве самых вероятных значений. Нарисованная квантовая карта в суперпозиции уже содержит все маршруты, по которым можно эти города объехать. Система сама выберет наиболее выгодный маршрут.
Программисту классического компьютера можно задать вопрос о разных частях его алгоритма: «Почему ты здесь так считал?» У квантового программиста достаточно спросить: «Правильно ли ты смоделировал проблему?» Если правильно — ответ получается не по каким-то расчетам, а просто в силу действия законов природы. В этом смысле большинство квантовых процессоров похожи не на компьютеры, а на старинную логарифмическую линейку, которая ничего не считала, а просто сразу давала ответ, когда на ней перемещали бегунок.
Внимательный читатель может воскликнуть: «Позвольте! Логарифмическая линейка, как и любое аналоговое устройство, в большинстве случаев дает приблизительный ответ — она просто оценивает результат! Как же вы хотите приблизительно раскладывать огромные числа на простые множители, если здесь важна каждая единичка?» И это, действительно, огромная проблема квантовых вычислений.
Надежный ответ квантовая модель дает не за один запуск системы, а лишь когда мы прогоняем через нее одну и ту же задачу тысячи раз. «Мы должны повторить квантовые вычисления много миллионов раз, набрать какую-то статистику и с этой статистикой уже работать, — рассказывает Рубцов. — Природа запрещает полностью охарактеризовать квантовое состояние один раз, если у вас есть только классические измерители».
То есть и оптимальный маршрут коммивояжера, и правильное разложение на множители получатся только после того, как мы запустим квантовый компьютер очень много раз, а полученные данные обработаем средствами математической статистики на классическом компьютере. Интересно, что такими же методами получают значимые результаты на Большом адронном коллайдере в ЦЕРНе! И в этом нет ничего удивительного: и там, и здесь люди имеют дело с неоднозначным квантовым миром.
В последнее время стали появляться сообщения о достижении «квантового превосходства». Это значит, что какого-то результата квантовый компьютер действительно достиг существенно быстрее, чем обычный. В компании Google в октябре 2019 заявили, что их 53-кубитный процессор выполнил за 200 секунд задачу, которую самые современные суперкомпьютеры решали бы 10 000 лет. Потом, правда, выяснилось, что это была искусственно придуманная задача, состоящая в быстром переборе последовательностей случайных чисел. А мы уже поняли, что все случайное ближе всего к квантовому миру с его неоднозначностями.
От технологий создания кубита до суперкомьпютера Существует много разных подходов для создания кубитов. Наиболее распространены сверхпроводящие кубиты, но также активно изучают кубиты на холодных атомах. Или на ионах, также на фотонах. В Российском квантовом центре стартовал проект по исследованию физических принципов создания магнонных кубитов. В отличие от своих ионных и сверхпроводящих собратьев, работающих при температуре около абсолютного нуля, эти кубиты смогут работать при комнатной температуре. В этом состоит замысел ученых, но до воплощения пока далеко. Квантовые компьютеры — это все еще экспериментальные устройства.
Промышленные квантовые компьютеры должны массово появиться примерно к 2025 году. Они будут щелкать традиционные шифры как орехи
«Вычислительной мощности пока недостаточно, чтобы выполнять какие-то универсальные наборы алгоритмов. Поэтому для того, чтобы он стал полным универсальным аналогом, мощность компьютера должна быть намного больше, я думаю, что это вопрос пяти-десяти лет, когда появится полноценная машина», — говорит Алексей Федоров, руководитель научной группы Российского квантового центра.
В июне 2020 года американская компания Honeywell объявила о создании мощнейшего квантового компьютера. У него всего лишь 6 кубитов, но они могут в разных сочетаниях объединяться для совместной работы. Эта важная характеристика называется «квантовый объем». У Honeywell 2020 года он равен 64-м. Но, конечно, чтобы решать серьезные задачи, такие как взлом современных ключей шифрования, кубитов должно стать в сотни и тысячи раз больше.
Фото: oneywell.com
Чтобы квантовые компьютеры стали частью наших повседневных технологий, предстоит решить множество технологических проблем: найти физические кубиты, которые долго сохраняют свои квантовые свойства при высокой температуре, научиться экранировать шумы и излучения, придумать надежные способы снятия информации с квантового процессора.
По прогнозам экспертов, промышленные квантовые компьютеры должны массово появиться примерно к 2025 году. Они будут щелкать традиционные шифры как орехи. Но означает ли все это, что уже через пять лет ни одна ваша сетевая переписка и ни одна банковская транзакция не будут безопасной? Нет, конечно, успокаивают нас специалисты по квантовым технологиям. Шифрование тоже можно сделать квантовым, и взломать такой шифр будет принципиально невозможно.
В основе конфиденциальности квантовых коммуникаций лежит хрупкость элементарных частиц, в частности фотонов. Согласно теореме о запрете клонирования, во Вселенной не может быть одновременно двух фотонов с одинаковыми состояниями. Другими словами, невозможно воспроизвести тот же самый фотон с той же самой информацией. Условный злоумышленник будет не в силах разгадать квантовый шифр.
Источник
submitted by postmaster_ru to Popular_Science_Ru [link] [comments]


2020.06.04 09:11 Lit_blog Комнатной х после узаконивание квартиры 3 перепланировки

Девяностолетний дед смотрит на меня из зеркала. Дряблая кожа свисает складками, как оплавленная резина. Лысый череп покрыт темными пятнами, глаза запали так глубоко, что почти потерялись. Белки прорежены набухшими венами.
В теле тянущая слабость, чувствую себя фигуркой из тонкого стекла. Одно неверное движение и рассыплюсь.
Вздохнув отодвинулся от раковины, под чутким взором робота-няни. У меня самая навороченная модель, со множеством «рук» и датчиков, готовая провести даже мелкие операции. Один минус — в полумраке напоминает исчадие ада.
Она проводила меня к креслу, помогла сесть. Силы утекают, словно из бочки с дыркой. Я покосился на робота и просипел:
— Я что, умираю?
— Да. Я уже вызвала скорую.
— Как это... неожиданно.
— Не волнуйтесь. Это страховой случай. Вам лучше поспать.
Руку кольнуло и по вене побежала струйка пламени, задержалась в замедляющемся сердце и ударила в голову.
***
Очнулся в больнице после первой операции. На затылке появилось округлое гнездо для нейроинтерфейса повышенной пропускной способности. К койке подвинут целый шкаф аппаратов для поддержки жизни, они разве что не думают за меня.
Чувствую себя головой профессора Доуэля.
Улыбчивый врач с готовностью пояснил, что перед главной операцией мне вживят порты по всей длине хребта.
— А сейчас отдыхайте, завтра усе закончится.
***
Я зажмурился в предвкушении боли, с детства привык, что любое медицинское вмешательство — боль. Забавно получается, чтобы не страдать, мы должны испытать агонию. Эдакий обмен с бессердечной Вселенной.
Гладкие руки комнатной температуры приподняли с койки, бережно перевернули. Лицо легло аккурат в круглую дырку, на манер тех, что делали раньше в массажных кушетках. На руках и ногах щелкнули эластичные фиксаторы.
— Во время процедуры мышцы могут начать сокращаться. — Сказал обладатель рук комнатной температуры, со всем участием, на которое способен синтезированный голос. — Не переживайте, больно не будет.
Интересно, врачи обязаны говорить это? В медах есть специальные курсы по шаблонным фразочкам, которые скорее нервируют, чем успокаивают? Это настолько обязательный момент, что его вбивают ИИ?
— Будет лучше, если вы начнете непрерывно думать о чём-либо. Например о фракталах. Вам нравятся фракталы?
— Да... они завораживают, как калейдоскопы. — ответил я.
Перед мысленным взором начал разворачиваться бесконечно чуждый и манящий узор, перетекающий сам в себя, меняющийся и остающийся неизменным. Есть в нём нечто гигеровское, но притягивающее взгляд, влекущее к себе.
— Очень хорошо. Продолжайте. — Сказал мистер Руки Комнатной Температуры.
Первое соединение отдалось смачным щелчком на затылке и тихим гудением с вибрацией, движущейся по кругу разъёма. Второй щелчок — «коннектор» зафиксирован. Щелчки пошли по хребту, будто тайская массажистка, аккуратно надавливает острыми «пяточками».
Фрактал расширился, заиграл яркими цветами от изумрудного до фиолетового. Я словно провалился в фрактальный колодец, в бесконечность.
Первый укол боли — подали напряжение.
Рисунок разбился, подобно зеркалу, и собрался, еще более яркий.
— Три... два... один!
Я поплыл... в полной темноте, окруженный фрактальным калейдоскопом. Подобно жидкости в совмещенных сосудах.
И да, это было больно.
Не как у зубного, но всё же.
Мысли начали сбиваться, а с ними и рисунок фракталов. Я запаниковал, потянулся к ним, пытаясь удержать... Ладонь комнатной температуры коснулась плечей.
— Всё хорошо, осталось совсем немного. Вы отлично держитесь!
Первым появилось чувство сердцебиения, отчетливое до ужаса. Мышечный мотор мерно и мощно сокращается в груди, гонит горящую кровь по жилам. Следом пришел вес костей и мышц, сокращение лёгких.
Тихий щелчок на затылке и вдоль хребта. Я открыл глаза и зажмурился. Они впервые видят свет. Медленно огляделся, сознание только осваивает новые рычаги управления и верещит от ужаса и восторга.
Я лежу на койке лицом вверх, а на соседней покоится тело дряхлого старика. Настолько древнее, что кажется дунь, и оно разлетится серой пылью. Надо мной навис андроид-медик, синтетическое лицо пытается отобразить участие, не проваливаясь за границу «зловещей долины».
— Как ваше самочувствие? — Спросил он, водя надо мной прибором, похожим на сканер штрих-кодов.
— Вроде... — Начал я и замолк, голос не чужой, но я настолько отвык слышать себя без дребезжания и шепелявости, что испугался. — ... нормально.
— Попробуйте сесть.
Я подчинился и мне почти удалось, в последний миг ладонь соскользнула с края койки. Руки комнатной температуры подхватили и бережно поддержали, как младенца делающего первый шаг.
— Всё в порядке. — Успокоил андроид. — Ваш разум только осваивается в новой оболочке, скоро всё придет в норму. Но советую воздержаться долгих прогулок, а лучше, пройти полный курс реабилитации...
Я перестал слушать, опираясь о гладкое плечо слез с койки. Новое тело кажется мясной колодой. Конечности двигаются короткими рывками, а сердце рвётся из груди.
Чувствую, как внутри просыпаются подсистемы, нормализуют давление и множество других показателей. Глубоко вдохнул и медленно выдохнул через нос, наслаждаясь позабытым чувством абсолютного здоровья.
— Как же это... прекрасно! — Сказал я, поднимая ладони к лицу.
В воображении продолжает разворачиваться фрактальный калейдоскоп, накладывается на реальный мир подобно тени. Я моргнул и наваждение пропало. С опаской покосился на тело старика, и мозг кольнула мысль: может, Я просто копия?
Настоящий Я сейчас заперт в бесконечной фрактальной клетке затухающего разума.
— Перенос выполнен на сто процентов. — Отрапортовал андроид, будто прочитав мысли. — Вы можете проверить активность мозга здесь или в любой независимой лаборатории.
Я посмотрел на него, покачал головой.
— Не надо... просто минутный страх, не более. Что теперь будет с ним?
Андроид посмотрел на пустую оболочку, пожал плечами и сказал:
— Это вам решать. Мы можем сохранить тело, за отдельную плату. Многие, знаете ли, любят любоваться прежним вместилищем. Хвастают перед друзьями, мол, глядит, какой я был совсем недавно! Зато теперь! Ого-го!
— Извращенцы... — Пробормотал я.
— Кто? Простите, я не знаю такого слова.
— Неважно, кремируйте, а урну с прахом отправьте на мой адрес.
***
Четыре двадцать утра, я иду к вершине мыса по изумрудной траве. Роса оседает на носках туфель, смачивает брюки. Утренний бриз треплет волосы, старается выдавить слезу из уголков глаз.
Море похоже на жидкий свинец, угрюмые тучи ползут с востока, воздух пахнет йодом и солью. Фарфоровая урна жжёт ладони.
На вершине я оглянулся на машину, стоящую у подножья с приветливо распахнутой дверцей. Покачал головой и повернулся лицом к восходу.
Горизонт охвачен огнём, одна за одной тучи вспыхивают нежным багрянцем, распадаются под напором золотых лучей. На серой глади моря начинает расти солнечная дорожка.
Я взялся за крышку урны, сказал задумчиво:
— Раньше я думал, это будут делать мои дети или внуки, потому не заготовил особых слов. Да и зачем... это ведь просто старая «оболочка».
Серый прах посыпался из перевернутой урны, ветер радостно подхватил и понёс к воде и восходу, закручивая в подобие фрактала.
submitted by Lit_blog to Pikabu [link] [comments]


2020.04.08 20:13 postmaster_ru Узаконивание после перепланировки 3 х комнатной квартиры

Физики поместили демона Максвелла между двумя квантовыми точками Физики смоделировали систему двух квантовых точек с одноэлектронными переходами для теоретической оценки термодинамических характеристик демона Максвелла с учетом информации и возвратного действия измерений. Они продемонстрировали возможность преобразования тепла в работу за счет информации и получили кривые зависимостей тепла и мощности от запирающего напряжения и степени туннелирования. Статья опубликована в журнале Physical Review B.
https://i.redd.it/rz0p8hdminr41.gif
Максвелл поставил свой знаменитый мысленный эксперимент с участием демона Максвелла в 1867 году. Сформулировал он его так: герметичный сосуд, заполненный молекулами, разделен перегородкой с дверцей. Этой дверцей управляет демон — он измеряет скорости молекул и избирательно пропускает в один отсек быстрые молекулы, а в другой — медленные, что в конечном итоге разделит все молекулы сосуда на две части относительно средней скорости изначального газа. В разных отсеках после разделения частиц будут разные средние скорости. Температура напрямую зависит от средней скорости частиц, а значит демон создаст разницу температур между двумя частями сосуда. Демон своими действиями упорядочил молекулы, и тем самым уменьшил энтропию системы, что на первый взгляд противоречит второму закону термодинамики.
Схематическое изображение классического мысленного эксперимента. wikimedia commons
С развитием теории информации ученые предложили новый подход к решению этого парадокса: демон собирает и запоминает информацию о скорости движения каждой частицы, но когда память переполняется, демон удаляет всю информацию, что увеличивает энтропию системы в целом. Таким образом, второй закон термодинамики должен учитывать наличие информации в этой системе. Согласно принципу Ландауэра на один бит информации при комнатной температуре выделяется как минимум 2.87*10-21 джоуля, и хотя эта величина невелика, при количестве частиц порядка 1023 она уже вносит ощутимый вклад в энтропию системы.
На сегодняшний момент система с демоном Максвелла много раз моделировалась в лабораторных условиях, ученые использовали такие системы, как броуновские частицы, молекулярные машины, фотонные и электронные системы, ультрахолодные атомы и даже молекулы ДНК. Для исследования термодинамики информации интересной кажется система квантовых точек, в которой измеряется заряд одного электрона, потому что электроны напоминают частицы газа в оригинальном мысленном эксперименте. Одноэлектронные транзисторы и квантовые точечные контакты — распространенные детекторы заряда — связаны с электрической схемой, и если ток через детектор чувствителен к близлежащим зарядам, то отдельные туннелирующие явления электронов могут быть замечены сразу же. Ученые уже осуществляли некоторые экспериментальные реализации такой системы в качестве двигателя Сциларда — прикладного аналога демона Максвелла.
Бьёрн Аннби-Андрессон (Björn Annby-Andersson) со своими коллегами из университета Лунда теоретически смоделировал проявление демона Максвелла в системе двух квантовых точек с одним электроном и продемонстрировал, как конвертировать тепло в работу с помощью информации. В модели они реализовали непрерывное измерение зарядов квантовых точек и продвижение электрона против приложенного напряжения по возвратной схеме.
Модель включала в себя электронную систему из двух квантовых точек с одним энергетическим уровнем и резервуар электронов с той же температурой. Аналогичные операции другие ученые проводили с одной квантовой точкой или с металлическими островками, но в этой работе физики рассмотрели более реалистичный детектор со своим уровнем шума и выбрали квантовые точки в качестве тел за счет возможности подбирать степень туннелирования электронов. Они выбрали достаточно большую энергию кулоновского отталкивания, чтобы в задаче рассматривать только один электрон, и пренебрегли вырожденными состояниями электрона, например, наличием спиновой вырожденности. И таким образом система могла находиться в трех состояниях: заряжена левая квантовая точка, заряжена правая квантовая точка или обе точки не заряжены.
Визуализация цикла работы демона Максвелла, кривыми стрелками обозначено туннелирование электрона. Подобное событие регистрируется детектором и энергетические уровни меняются, как показано вертикальными линиями. Björn Annby-Andersson / Physical Review B, 2020
Для рассмотрения сложной задачи с ошибками физики сначала разобрались с тем, что будет в случае идеальности всех операций. Для идеальности они использовали три допущения: измерения заряженности квантовой точки безошибочны, а потому в любой момент ученые могут быть уверены в состоянии системы, возвратное воздействие применяется мгновенно и температуры подобраны таким образом, что вероятность нахождения системы в состоянии высшей энергии практически нулевая, а в состоянии наименьшей энергии — стопроцентная. Тогда процесс можно описать так: (1) Сначала квантовые точки пустые, в таком положении единственное возможное событие — туннелирование электрона из резервуара электронов в левую квантовую точку, при этом энергетические уровни немедленно достигают нижнего положения; (2) Электрон туннелирует к правой квантовой точке и энергии уровней соответственно поднимаются; (3) Электрон туннелирует в электронный резервуар и система приходит в начальное положение.
В таком случае совершается работа против приложенного напряжения и температура электронного резервуара понижается. При исследовании статистических моментов распределения электрона ученые выяснили, что транспортное, тепловое и рабочее распределение не подчиняется нормальному распределению, а суммарное изменение энтропии системы — сумма энтропии демона Максвелла и электрической схемы резервуаров и квантовых точек — больше нуля, что подчиняется второму закон термодинамики.
Затем ученые перешли к рассмотрению неидеального демона, они добавили задержку измерения в качестве шума детектора заряда и ослабили условия на вероятности нахождения в состояниях максимальной и минимальной энергии. Физики смоделировали методом Монте-Карло четыре различных типа поведения системы с реалистичным детектором — медленный, шумный, близкий к идеальному детектору и шумный и медленный. Они вычислили среднюю из десяти тысяч симуляций мощность тепла и работы и пришли к выводу, чем больше зашумленность детектора, тем меньше область действия демона Максвелла.
При малой степени туннелирования электрона система может рассматриваться, как идеальная, и электронные траектории хорошо описываются. Если начать увеличивать степень туннелирования, то ученые все еще смогут оперировать демоном Максвелла, но идеальные параметры мощности станут недостижимыми. Еще большее увеличение степени туннелирования электрона не позволяет точно описывать траектории электронов и система переходит в состояние электронного насоса за счет напряжения управления.
Источник
submitted by postmaster_ru to Popular_Science_Ru [link] [comments]


2020.04.04 17:52 alyosha092 Узаконивание после перепланировки 3 х комнатной квартиры

Интересные факты о смерти
https://preview.redd.it/af93y3g9auq41.jpg?width=1080&format=pjpg&auto=webp&s=bfb42cc5691025467bc2cbefd578ed94f3447d78
1. Ваше тело может издать громкий стонущий звук после вашей смерти Когда воздух и газы, оставшиеся в мертвом человеке, начинают выходить через горло и нос, они могут вызвать вибрацию голосовых связок, что может привести к появлению звука, похожего на стон.
2. В 1800-х годах фотографирование позирующих трупов было совершенно обычной практикой В то время фотографии были роскошью, поэтому, если кто-то скончался до того, как успел сфотографироваться при жизни, то это была его единственная возможность попасть на фото. Позже фотосъёмка стала более распространенной и практика съёмки мертвых людей утратила свою актуальность.
3. Существует небольшая вероятность того, что вы можете умереть от самовозгорания Истории о людях, загоревшихся во время занятий обычными делами, стали появляться сотни лет назад. Всего было зарегистрировано несколько сотен случаев, и не один из них не был объяснён научно.
Поздно ночью, в канун Рождества 1885 года, в небольшом фермерском городке Сенека, штат Иллинойс, США, загорелась женщина по имени Матильда Руни. Когда это произошло она находилась одна на своей кухне. Огонь быстро сжег все её тело, кроме ног. Инцидент также унес жизнь ее мужа Патрика, который был найден задохнувшимся от дыма в другой комнате дома.
4. Из-за неразборчивого почерка врачей ежегодно умирают 7000 пациентов Согласно исследованию, проведенному в 2006 году Национальной медицинской академией США, неразборчивые дозы и сокращения названий лекарств привели к миллионам травм и тысячам смертей.
5. Судмедэксперты могут определить, когда, а иногда и как, умер человек, посмотрев на виды насекомых, которые начали скапливаться в мертвом теле и вокруг него После смерти человека разлагающееся тело начинает привлекать определённых насекомых. Судебные энтомологи могут определить время и причину смерти, основываясь на стадиях развития личинок, поведении насекомых и многом другом.
6. Ваши глазные яблоки съёжатся вскоре после вашей смерти Один гробовщик сравнил съёживание глазного яблока с портящимся виноградом, который выглядит так, словно он сдулся.
7. Для того, чтобы на похоронах глаза выглядели более натурально, под веки иногда помещают пластиковые полусферы Полусферы, как правило, имеют шипы, чтобы они не двигались.
8. Цвет ваших глаз, скорее всего, изменится, прежде чем ваши глазные яблоки полностью разложатся Согласно исследованию 2008 года, зрачки трупов с голубыми глазами стали коричневыми или черными в течение 48-72 часов после смерти при комнатной температуре.
Патологи и следователи на месте преступления научились принимать это к сведению, чтобы не делать неправильных записей во время вскрытия или неверной идентификации жертв.
9. Когда-то следователи по уголовным делам полагали, что изображение убийцы может быть запечатлено в глазах жертвы (что-то вроде съёмки на фотоаппарат), и оно остается там после смерти Вплоть до 20-го века следователи анализировали глаза жертв, чтобы попытаться найти изображение убийц, которое по их теории должно было оставаться где-то в глазном яблоке. Сегодня мы знаем, что это невозможно.
10. Совершенно реально умереть от «смертельной дозы воды», т.е. от питья слишком большого количества воды Официально этот вид смерти известен как гипонатриемия, которая происходит, когда содержание натрия в крови падает до невероятно низкого уровня.
В 2007 году одна женщина выпила шесть литров воды за три часа, чтобы выиграть Nintendo Wii, её вырвало и она умерла несколько часов спустя. Чрезмерный приём воды также убил многих спортсменов.
11. Основными причинами смерти являются болезни сердца, случайные отравления и автомобильные авари Да, вы правильно прочитали: случайное отравление.
12. Некоторые люди страдают от синдрома, из-за которого верят, что они уже мертвы или вообще не существуют Такое состояние называется синдром Котара, который был назван в честь невролога Жюля Котара.
Синдром также известен как «синдром ходячего трупа», и считается, что его вызывают поражения головного мозга.
13. Если тело оставить разлагаться при постоянной температуре 10°C, то оно может достичь состояния скелета всего за 4 месяца Для справки: органам обычно требуется около года, чтобы достичь этой стадии процесса разложения в обычных условиях.
14. Судмедэксперты могут легко определить, утонул ли человек, или его убили, а затем бросили в водоем, просто заглянув в его легкие Когда кто-то тонет, его легкие заполняются водой, и тело опускается на дно, но если тело человек был брошен в воду после смерти, то в легких все еще будет воздух, а тело будет плавать на поверхности.
15. Труп может раздуваться и набухать почти вдвое обычного размера в течение нескольких дней после смерти из-за скопления газов в организме во время разложения 16. После вашей смерти ваши останки могут быть превращены в виниловую пластинку, бриллиант или даже дерево Говоря о дереве, имеется в виду, что ваш прах будет питать посаженное в урну дерево, которое потом можно будет высадить на участке. Сегодня существует немалое количество компании, занимающихся подобными услугами.
17. Когда тело разлагается во влажной среде, вещество, похожее на мыло, может медленно образовываться на теле. Это называется жировоск Жировоск, или адипоцир — это мылообразное вещество, в которое превращается телесный жир, когда тело начинает разлагаться при высокой влажности и отсутствии воздуха или в текучей воде.
18. Ваши волосы и ногти будут становиться длиннее после вашей смерти Они не будут расти, на самом деле такой эффект будет создаваться из-за обезвоживания кожи, создающего иллюзию роста.
19. В редких случаях женщины, которые умерли во время беременности, все еще могут «родить» «Роды в гробу» — официально известные, как «посмертные роды», происходят, когда газы, накопившиеся в животе умершей беременной женщины, выталкивают мёртвого ребенка через влaгaлищнoe отверстие.
За последнее десятилетие было зарегистрировано всего два подобных случая.
20. Вполне вероятно, что после вашей смерти ваше тело будет довольно реалистично подергиваться или даже двигаться Когда ткани в теле начинают умирать, они могут производить то, что называется «трупный спазм», вызывая движения, которые очень похожи на рефлексы.
Хотя эти судороги случаются редко, они могут выглядеть как маленькие подергивания или даже крупные движения. Это очень похоже на признаки трупного окоченения, и зачастую их трудно различить.
Источник - https://ritual.net.ru
submitted by alyosha092 to u/alyosha092 [link] [comments]


2020.04.03 19:58 postmaster_ru Вакцина против коронавируса заставила организм мыши производить антитела, специфичные к SARS-CoV-2

Вакцина против коронавируса заставила организм мыши производить антитела, специфичные к SARS-CoV-2 Помимо проведения успешных доклинических испытаний на грызунах, исследователи из США использовали новый и безболезненный подход для доставки препарата внутрь — массив микроигл, размещенных на поверхности крошечного пластыря.
Препарат доставляется при помощи массива микроигл на небольшом кусочке пластыря / © University of Pittsburgh
Сотрудники медицинского факультета Университета Питтсбурга (США) сообщили об успешных доклинических испытаниях потенциальной вакцины против SARS-CoV-2 — возбудителя заболевания Covid-19. Результаты опубликованы30118-3.pdf) в журнале EBioMedicine.
«У нас был опыт с SARS-CoV в 2003 году (возбудитель «атипичной пневмонии». — Прим. ред.) и MERS-CoV (коронавирус ближневосточного респираторного синдрома. — Прим. ред.) в 2014 году. Эти два вируса, тесно связанные с SARS-CoV-2, научили нас, что определенный белок, называемый спайковым (S-белок, напоминающий «шипы», на поверхности коронавируса тесно связывается с рецепторными белками человека, находящимися на поверхности человеческих клеток. — Прим. ред.), важен для индукции иммунитета против вируса. Мы точно знали, как бороться с новым вирусом. <…> Поэтому так важно финансировать научные исследования в области вакцин. Вы никогда не знаете, откуда может стартовать следующая пандемия», — рассказал Андреа Гамботто, доктор медицинских наук, доцент кафедры хирургии в Медицинской школе Университета Питтсбурга.
Как заявили ученые, при тестировании на мышах вакцина, названная PittCoVacc (Pittsburgh Coronavirus Vaccine), доставлялась внутрь при помощи крошечного пластыря, который умещается на кончике пальца и содержит в себе 400 микроигл, состоящих из сахара и кусочков белка, — после введения спайкового белка в кожу они просто растворяются.
Препарат заставил организмы грызунов на протяжении двух недель продуцировать специфичные к SARS-CoV-2 антитела (белковые соединения плазмы крови, реагирующие на введение в организм бактерий, вирусов, белковых токсинов и других чужеродных антигенов), причем в количествах, которые считаются достаточными для нейтрализации вируса. Хотя еще потребуются исследования в долгосрочной перспективе, ученые напоминают, что в их предыдущих опытах мыши, получавшие вакцину против MERS-CoV, производили достаточный уровень антител, чтобы нейтрализовать вирус как минимум на год.
При этом, отмечают создатели PittCoVacc, по сравнению с экспериментальной мРНК-вакциной (предполагает введение в живую клетку специального генетического материала, который запускает производство белков патогенов внутри организма, что и вызывает иммунную реакцию), клинические испытания которой начались в середине марта, их препарат следует более традиционным путем (например, как прививки от гриппа), задействуя лабораторные кусочки вирусного белка для формирования иммунитета.
Вакцина против SARS-CoV-2 оставалась эффективной даже после стерилизации гамма-излучением: как заявляют исследователи, это ключевой шаг к созданию препарата, пригодного для введения человеку. Еще один плюс PittCoVacc в том, что кусочки спайкового белка изготавливаются послойно на культивируемых клетках, сконструированных для экспрессии S-белка нового коронавируса. Таким образом, появляется возможность легко увеличить объемы производства вакцины SARS-CoV-2. После изготовления PittCoVacc может находиться при комнатной температуре до тех пор, пока она не понадобится: значит, нет необходимости охлаждать препарат во время транспортировки и хранения.
«Для большинства вакцин вам не нужно начинать с масштабируемости, — подчеркнул Гамботто. — Но когда вы пытаетесь быстро разработать вакцину в условиях пандемии, это первое требование».
Что касается дальнейших планов, то сейчас создатели перспективной вакцины ожидают ее одобрения от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США. После этого, в ближайшие месяцы, ученые должны приступить к первой фазе клинических испытаний на людях.
«На тестирование с участием пациентов в норме уходит как минимум год, возможно, даже больше, — добавляет ведущий автор исследования Луи Фало, доктор медицинских наук и профессор кафедры дерматологии. — Эта конкретная ситуация отличается от всего, что мы когда-либо видели, так что мы пока не знаем, сколько времени займет процесс клинической разработки. Возможно, мы можем предположить, что сделаем это быстрее».
Источник
submitted by postmaster_ru to Popular_Science_Ru [link] [comments]


2020.03.11 20:59 5igorsk Вице–президент Российской академии наук Алексей Хохлов о гомеопатии

  1. После общения с коллегами из Комиссии РАН по борьбе с лженаукой я решил самостоятельно познакомиться с гомеопатическими и релиз–активными препаратами, используя физико–химические методы. Для этого я купил в аптеке таблетки Анаферона, АртроФоона, Эргоферона, Оциллококцинума и Субетты и отдал их на масс–спектрометрический анализ. Перед праздниками как раз получил результаты. Образцы готовились так:
«Образцы таблеток Анаферона, АртроФоона, Эргоферона, Оциллококцинума и Субетты помещали в микропробирку на 2 мл, добавляли воду (для ВЭЖХ–МС) до 2 мл и сонифицировали в ультразвуковой бане 10 минут при комнатной температуре. Полученные суспензии перемешивали на вортексе в течение 1 мин, затем цетрифугировали 10 мин при 13000 rpm. Из супернатантов отбирали аликвоты по 10 мкл и разбавляли в 10 раз смесью метанол/вода (50/50) (для ВЭЖХ–МС) с добавлением 0,1% муравьиной кислоты (для ВЭЖХ–МС). В бланковые образцы добавляли по 10 мкл воды вместо анализируемых препаратов.»
Далее следует более 10 страниц масс–спектрометрических графиков и их описания. Приведу только конечный вывод.
«Масс–спектрометрический анализ продемонстрировал присутствие во всех проанализированных препаратах исключительно сахаров. Ни в режиме регистрации положительных ионов, ни в режиме регистрации отрицательных ионов не обнаружено даже следов пептидов или каких–либо других органических соединений (кроме сахаров). Предел обнаружения метода по пептидам и большинству органических соединений измеряется в фемтограммах, т.е. (10 в минус 15–ой степени г). Собственно говоря, результат подтверждает заявленный производителями состав, свидетельствующий о фактическом отсутствии действующего вещества.»
Итак, с точностью до фемтограммов действующего вещества нет, но производители препаратов этого и не скрывают. Они утверждают, что как показывают контрольные испытания «все равно помогает».
Так что у нас на одной чаше весов фундаментальное знание, которое говорит, что в отсутствие молекул вещества его действие невозможно. А на другой чаше весов – некие контрольные испытания.
По ассоциации в голову лезут слова известной песни Тимура Шаова «Свободная частица»: «Закон Кулона не объявишь вне закона». Кстати, песня написана в 2006 году, но актуальности не потеряла. Стоит еще раз послушать.
2. Мой пост от 24 февраля, в котором я сообщил о результатах масс–спектрометрического анализа таблеток Анаферона, АртроФоона, Эргоферона, Оциллококцинума и Субетты, получил неожиданный для меня широкий резонанс. Было много откликов и здесь на facebook, и в регулярных СМИ. Столь большой интерес к моему короткому посту показывает, что тема использования высокочувствительных физико–химических методов для анализа лекарственных препаратов весьма актуальна.
В связи с откликами в СМИ стоит сделать одно уточнение. Я писал, что анализ показал присутствие в исследуемых образцах исключительно сахаров (имея в виду, что сахара – это класс химических соединений). А многие СМИ написали, что в таблетках нашли только сахар (по–видимому, имея в виду, что это – тот сахар, который мы покупаем в магазине). На самом деле, правильное утверждение состоит в том, что первые четыре из названных лекарственных препаратов – это в основном лактоза (иногда с примесью других сахаров), а Субетта – это в основном изомальтит. Лактоза и изомальтит принадлежат к классу сахаров. Важно, что кроме сахаров в таблетках не обнаружено других соединений.
Появились и отклики от производителей данных препаратов. Их смысл состоит в том, что действующее вещество в таблетках все же есть, но его концентрация намного меньше предела чувствительности метода масс–спектрометрии. Но этот метод – один из наиболее чувствительных физико–химических методов анализа, известных современной науке. Большинство ядовитых веществ, будучи разбавленными до предела чувствительности метода масс–спектрометрии, не нанесет никакого вреда человеческому организму. А тут нас пытаются убедить в наличии лекарственного эффекта при еще больших разбавлениях.
В предыдущем посте я писал, что дилемма такова. Либо мы верим тому, что вопреки фундаментальному научному знанию лекарственный эффект может достигаться при таких запредельных разбавлениях, либо ставим под сомнение результаты контрольных клинических испытаний, которые показали, что эффект есть. Будучи предоставлен такому выбору, я бы все же перепроверил контрольные испытания, причем привлек бы для этого совершенно независимые сертифицированные группы. Это касается и российских препаратов, и Оциллококцинума, который производится во Франции.
Экспертные заключения по результатам таких испытаний должны быть опубликованы на сайте Минздрава РФ, как этого требует статья 27 Федерального закона от 12.04.2010 №61–ФЗ «Об обращении лекарственных средств».
submitted by 5igorsk to Tay_5 [link] [comments]


2020.03.04 11:00 fifastyle Перепланировки квартиры комнатной после узаконивание х 3

Летом волосы подвергаются иссушающее действие палящего солнца, зимой же пересушиваются центральным отоплением. И негативное влияние батарей и обогревателей порой сильнее. Особенно страдают осветленные волосы и волосы, завитые химическим способом. Поэтому зимой как нельзя более необходимы увлажняющие средства для волос — маски, бальзамы и ополаскиватели.
Фен лучше настроить на щадящий режим и стараться не пересушивать волосы после мытья. Лучше не досушивать волосы феном до конца, а дать возможность волосам досохнуть при комнатной температуре.
Использование лака для волос из-за содержания в нем спирта также способствует сухости волос. Не стоит и злоупотреблять лаком в мокрую и ветреную погоду — в этом случае волосы будут выглядеть хуже, чем без фиксации. Разумно использовать гели и муссы для укладки с сильной фиксацией, чем обычно, а не перегружать прическу большим количеством привычного средства — если прическа примнется под головным убором, восстановить ее будет намного проще.
Дополнительное питание для волос зимой Весьма эффективны маски перед мытьем головы.
Это могут быть готовые средства — они эффективны и просты в использовании. Однако время от времени рекомендуется вспоминать о таких народные рецепты как маска из теплой простокваши (кефира) или подогретого репейного масла. Маски хорошо питают и восстанавливают структуру волос. Выдерживать их нужно около сорока минут, после чего вымыть голову как обычно.
Правильный уход за волосами зимой Знаменитые средства «2 в 1», представляющие собой шампунь и ополаскиватель в одном флаконе, лучше приберечь для экстренных случаев типа командировки или поездки на отдых. При частом применении они не обеспечивают необходимого питания и увлажнения волос. Кроме того, активные компоненты, входящие в состав таких средств, имеют свойство откладываться в самых корней, лишая волосы пышности. А объем волос особенно актуален в зимнее время, когда волосы приходится прятать под шапки и шляпки.
Как часто следует мыть голову зимой? В зимнее время, возможно, придется мыть голову чаще из-за более активной деятельности сальных желез. Не нужно использовать очень горячую воду для мытья головы. Горячая вода способствует более активной работе сальных желез. головные уборы.
Под головными уборами не только деформируется прическа, но и кожа головы очень нуждается в воздухе. К сожалению, совсем без головного убора в холодное время не обойтись. Реакцией организма ни низкие температуры может стать жировая прослойка под кожей головы — таким образом организм будет избавляться от холода и провоцировать выпадение волос. Кроме того, на морозе кровеносные сосуды головы сужаются, и поступление к коже головы витаминов и питательных веществ сильно ограничивается. Максимальной температурой, при которой можно обойтись без головного убора, является минус 5 градусов Цельсия. Длительное пребывание в головном уборе лишает кожу головы возможности дышать. Поэтому не рекомендуется находиться в помещении в шапке. Лучше, если шапочка будет из натурального, а не из синтетического волокна. Если не хочется мяты под шапкой красивую прическу, то можно подбирать одежду с удобным капюшоном.
Уход за волосами зимой и витамины Зимой необходимо употреблять витамины. В рационе обязательно должны быть такие витамины как А, С, Е, витамины группы В. Специально разработанные витаминные комплексы не дадут волосам слишком «устать» за зиму.
Уход за волосами зимой и питания Зимой волосы очень быстро становятся жирными, а шампуни для жирных волос раздражают кожу головы — она ​​начинает шелушиться и чесаться. Зимой, прежде всего, необходимо обратить внимание на питание. Сократив количество жирной и острой пищи, вы значительно поможете своей секреции сбалансировать выработку кожного сала в стрессовых для организма и волос, в частности, зимних условиях.
Источник: https://fifa-style.com.ua/novosti/kak-uhazhivat-za-volosami-v-morozy/
submitted by fifastyle to u/fifastyle [link] [comments]


2020.03.02 08:48 Cloud4Y Комнатной перепланировки квартиры х узаконивание после 3

Паутина на дне стакана, или что объединяет американский виски и науку
https://preview.redd.it/pjf3048h28k41.png?width=800&format=png&auto=webp&s=b3b367273075ae2e48002da1a9da0dcf2f05377b
В науке до сих пор происходят «случайные» открытия. Так было с пенициллином, рентгеном, виагрой. И вот свежее открытие, пусть и не столь значимое, но интересное: оказывается, капля американского виски после высыхания образует удивительной красоты узор. Какими они бывают, почему у других марок виски нет такого отпечатка и как вообще учёные это выяснили, рассказывает Cloud4Y.
Возможно, вы замечали, что между шотландским и американским виски есть разница. И не только в названии (Scotch whisky или American whiskey), но и во вкусе. Это связано с тем, что шотландский виски обычно приобретает свой вкус, когда он выдерживается в старых бочках, в то время как американский виски (бурбон) выдерживается в новеньких бочках из обожженного дуба. Эту особенность в производстве внедрили не случайно: это помогает придать насыщенные нотки дуба в напитке, а также ускорить выдержку.
Однако учёные смогли найти ещё одно отличие американского виски от аналогичного алкоголя. И нашли они его на дне стакана. Да-да, это не шутки. По высохшей капле американского виски можно узнать, настоящий он или нет, а также определить, что это не скотч или ирландский виски. Правда, пока для этого нужно проводить экспертизу в лаборатории.

Отпечатки уникальны для каждого образца проверенного американского виски. Перед вами узоры, образуемые разбавленной каплей виски следующих брендов: (a) Four Roses (22.5% ABV), (b) Heaven Hill (22.5% ABV), Maker's Mark Cask Strength (22.5% ABV), (d) Jack Daniel's Single Barrel (25% ABV), (e) Pappy Van Winkle's Family Reserve 23 Year (25% ABV), и (f) Woodford Reserve Double Oak (25% ABV)
Идея родилась случайно. Молодой учёный по имени Стюарт Уильямс однажды заметил, что на дне стакана с высохшим бурбоном остаются весьма необычные следы. И начал их фотографировать. Ему показалось, что они напоминают фото дна глазного яблока. Также он вспомнил, что в 2016 году уже публиковались результаты похожего исследования, проводившиеся для шотландского виски. В их ходе выяснилось, что после испарения виски остаются характерные концентрические круги (фото). По сути, там действовал механизм, похожий на «эффект кофейного пятна», когда испаряется одна жидкость, а твердые частицы, которые растворились в жидкости (например, кофейная гуща), образуют кольцо. Это происходит потому, что испарение происходит быстрее на краю, чем в центре. Любая оставшаяся жидкость течет наружу к краю, чтобы заполнить промежутки, утягивая эти твердые частицы с собой.
Уильямс выяснил, что если он разбавит каплю бурбона и позволит ей испариться в тщательно контролируемых условиях, он образует то, что он называет «паутиной виски»: тонкие нити, которые образуют различные решетчатые узоры, похожие на сети кровеносных сосудов. Заинтригованный, он решил провести дальнейшие исследования с различными типами виски, а также бутылкой шотландского виски Glenlivet для сравнения. Это был идеальный проект для его творческого отпуска, и он поделился идеей исследования с коллегами. Предполагалось, что команда изучит следы, остающиеся после американского виски, и объяснит их вид. Так и получилось, что целая группа учёных Луисвильского университета посвятила себя увлекательному исследованию отпечатков, которые оставляют капли американского виски.
Материал для исследования
Команда Уильямса протестировала 66 марок американских виски, и только один не создал паутинку-отпечаток. Это был кукурузный виски, который зрел не в бочке. Образование отпечатка-паутины виски, похоже, связаны с содержанием алкоголя. Учёные подчёркивают, что закономерность сохранялась только при определенных условиях: при комнатной температуре и разведении виски водой до 40-50 процентов.
Исследователи выпаривали капли бурбона, разбавленные водой, и изучали осадок под микроскопом. У виски с концентрацией спирта не менее 3% образовывались однородные плёнки. Бурбоны с объемным уровнем алкоголя около 10% оставляли следы, похожие на кофейные кольца. При концентрации выше 30% тоже получалась однородная плёнка. И лишь на промежуточном уровне, когда объемный уровень алкоголя в бурбоне колебался в диапазоне от 20% до 25%, можно было увидеть уникальные паутинообразные структуры.

На изображении видно, что однородная плёнка формируется после высыхания капли бурбона с объемным содержанием алкоголя (ABV) более 35%, а узоры кофейного типа появляются при низком ABV (10%). Неожиданная паутинная структура возникает при ABV (20%).
Смешивание в растворителях (воде или спирте) уменьшает эффект, когда капли очень маленькие. Большие капли дают более однородные пятна. При отслеживании движения жидкости в каплях виски с помощью флуоресцентных маркеров учёные обнаружили, что молекулы сурфактанта собираются на краю капли. Это создало градиент напряжения, притягивающий жидкость внутрь (известный как эффект Марангони или «слёзы вина»). Существуют также растительные полимеры, которые прилипают к стеклу и направляют частицы в бокале с виски. Но химия виски невероятно сложна, поэтому до сих пор неясно, какие именно ингредиенты связаны с этими двумя эффектами.
Уильямс и его коллеги аккуратно наносили крошечные капли каждой марки бурбона на предметное стекло и сфотографировали отпечатки с помощью инвертированного микроскопа и светодиодной подсветки. Они отмечали значительную турбулентность (вихри) в первой фазе испарения, прежде чем всё успокоилось в ламинарном потоке, похожем на след, генерируемый кораблем. Эта начальная турбулентная фаза помогла определить возможную модель формирования отпечатков. Химические вещества выделяются при взаимодействии виски с обугленной древесиной бочки. Они образуют комки (мицеллы), и испаряющаяся турбулентность заставляет их разрушаться в окончательный остаточный образец: паутинообразный отпечаток.
Изучение виски
То есть твёрдые микрочастицы обугленной древесины попадают в виски. И после испарения жидкости остаются на поверхности стекла. Паутина виски образовывалась у различных сортов американского виски, но не у дистиллятов, что указывает на то, что обугленная новая дубовая бочка и условия созревания играют важную роль.

Это фотография, сделанная электронным микроскопом. Вы видите единую паутинообразную структуру, напоминающую свёрнутый монослой (покрытую тонким слоем золота для улучшения характеристик изображения).
Чем полезно это исследование? Ну, во-первых, оно просто показывает нам красоту виски (сайт с другими фото). На эти отпечатки можно любоваться долго, в них есть что-то космическое и загадочное.

https://preview.redd.it/hhxiisuz28k41.png?width=2600&format=png&auto=webp&s=100f0ab31789581a1865c0068538c5542f5ef37a
Во-вторых, это открытие может пригодиться производителям и потребителям. Первые смогут получать дополнительную информацию о созревании продукта, а вторые — защитить себя от некачественного алкоголя. Ведь если после высыхания разбавленного американского виски образуется не паутинка, а плёнка, то это может означать, что виски был изготовлен по другой технологии. Другими словами, перед нами не бурбон, а подделка.
Спасибо за внимание! Ваш Cloud4Y.
submitted by Cloud4Y to Pikabu [link] [comments]


2020.02.08 20:13 postmaster_ru После квартиры перепланировки узаконивание х комнатной 3

Научные итоги 2019 года и ожидания в 2020 году: мнения российских ученых Какие научные события уходящего года считают значимыми ведущие российские ученые? Телеканал «Наука» подводит итоги серии интервью с представителями различных направлений науки о наиболее активно развивающихся сферах 2019 года, значимых исследованиях и открытиях, а также ожиданиях от предстоящего года.
Медицина, биология, биомедицина, генетика Нобелевская премия по медицине за открытие механизма адаптации клеток к кислороду
https://preview.redd.it/cmaxegn4crf41.jpg?width=775&format=pjpg&auto=webp&s=b0c3c8522b2b258890f93c448d290242446827af
В качестве важнейшей фундаментальной работы, отмеченной в этом году, можно выделить исследование молекулярных механизмов адаптации клетки, ответа клеток на кислород. За исследование данных процессов Нобелевскую премию 2019 года по медицине и физиологии получили британец сэр Питер Рэтклиф и американцы Уильям Келин-мл. и Грегг Семенца. Эта работа, раскрывающая механизм влияния кислорода на клеточный метаболизм и физиологические функции, названа базовой для большого числа прикладных исследований, связанных в том числе с лечением таких болезней, как анемия и рак.
«Учеными, получившими Нобелевскую премию в области биологии и медицины в этом году, были открыты молекулярные механизмы: как клетка адаптируется к условиям, когда кислорода много, и как клетка адаптируется, когда кислорода мало. Открытие внесло достаточно большой вклад в последующие, уже более прикладные исследования в области изучения патогенеза онкологических заболеваний, диабета второго типа, адаптации к нагрузкам», — рассказал Александр Карасев, исполнительный директор биомедицинского холдинга «Атлас», врач клинико-лабораторной диагностики, специалист в области организации здравоохранения.
Совершенствование метода редактирования генома
https://preview.redd.it/20yrcjs5crf41.jpg?width=775&format=pjpg&auto=webp&s=a73d15fe9313d1799cccd71522296fdbec017d28
Целый ряд работ связан с совершенствованием и развитием технологий редактирования генома CRISPCas9. По словам экспертов, можно констатировать, что в 2019 году генная инженерия перешла на новую ступень. В октябре журнал Nature опубликовал статью, в которой раскрывается суть нового метода. Американским генетикам удалось модифицировать технологию CRISPCas9, обучив ее эффективно исправлять большинство мутаций, приводящих к развитию болезней человека.
Также ученые из Гарварда провели успешные испытания технологии, позволяющей вносить изменения в гены стволовых клеток, не извлекая их из организма. В ходе опытов специалисты загружали механизм генного редактирования CRISPR в различные типы аденоассоциированных вирусов (AAV), которые могут проникнуть в клетки млекопитающих без вреда для них. Полученные результаты говорят о возможности перманентно модифицировать геном не только стволовых клеток, но и полученных от них дифференцированных клеток.
Клеточные исследования мозга Новые исследования механизмов работы мозга в будущем могут привести к пониманию физиологии различных психических заболеваний. «Технология исследования мозга на уровне отдельных клеток появилась достаточно недавно, но уже сейчас она позволяет взглянуть по-новому на устройство мозга и его работу, — пояснил Филипп Хайтович, нейробиолог, руководитель Института вычислительной биологии в Шанхае, профессор Сколковского института науки и технологий. — С одной стороны, мы увидели, что есть некоторые упущения в, казалось бы, хорошо изученных механизмах работы мозга. С другой стороны, появилась возможность нового подхода к пониманию таких заболеваний, как, например, шизофрения, депрессия, которые казались нам невероятно сложными. Сейчас стало ясно, что их развитие может иметь под собой совершенно четкие и определенные физиологические процессы».
Физика и астрономия «Портрет» сверхмассивной черной дыры
https://preview.redd.it/1ckee227crf41.jpg?width=775&format=pjpg&auto=webp&s=f4b1d4d37c3012636032712b3672ddf799dcc148
В апреле сотрудники Event Horizon Telescope опубликовали изображение сверхмассивной черной дыры, распложенной в центре галактики М87. Полученная картинка — результат работы восьми радиотелескопов, расположенных по всему миру.
«Ценность и значимость этого события заключается в следующем. Полученное изображение тени черной дыры, а точнее, ореола фотонов вокруг нее можно считать наиболее прямым из косвенных указаний на существование черных дыр, о которых астрофизики говорят уже полвека, рассказал Юрий Ковалев, астрофизик, доктор физико-математических наук, заведующий лабораторией Астрономического центра Физического института им. П. Н. Лебедева РАН. — Однозначным доказательством полученный снимок назвать нельзя: существуют физические модели экзотических объектов, которые могут дать что-то похожее. Однако черная дыра оказывается наиболее вероятным кандидатом — это вполне соответствует ожиданиям для данной галактики».
Снимок первой межзвездной кометы 2I/Borisov
https://preview.redd.it/nxyqj168crf41.jpg?width=775&format=pjpg&auto=webp&s=6f9e163a703b5d5a6335a6f3dd3aaa5239828d24
Впервые комета было замечена сотрудником Крымской астрофизической обсерватории Геннадием Борисовым 30 августа. В настоящее время орбита кометы достаточно точно известна и однозначно указывает на ее внесолнечное происхождение. Названный по имени своего первооткрывателя объект 2I/Borisov стал вторым известным телом с подобной траекторией.
«Самым запоминающимся событием в 2019 году стало открытие межзвездной кометы, влетевшей в Солнечную систему, — заявил Владимир Сурдин, астроном, доцент физического факультета МГУ, старший научный сотрудник Государственного астрономического института им. П. К. Штернберга. — Во-первых, это первая в истории науки комета, прилетевшая из-за пределов нашей Солнечной системы, причем прилетевшая с такой бешеной скоростью, что никакого сомнения в ее межзвездном происхождении нет. Это вдвойне подарок астрономам, потому что мы ее заметили на подлете. Ничего необычного, как и ожидалось, мы не увидели в этом объекте, но в этом и есть открытие: за пределами Солнечной системы примерно так же вещество устроено, как и внутри нее. И вдвойне приятно, что ее открыл сотрудник нашего института — Геннадий Борисов. Комета называется 2I/Borisov, то есть второй межзвездный (interstellar) объект "комета Борисова". Геннадий профессиональный астроном, но поиск комет — его хобби, поэтому он скромно называет себя любителем. Всю жизнь он проработал в Южной обсерватории МГУ в Крыму и своими руками сделал телескоп, который позволил совершить такое замечательное открытие. Фантастика!»
Старт проекта «Спектр-РГ»
https://preview.redd.it/oxjfqva9crf41.jpg?width=775&format=pjpg&auto=webp&s=9cdacb2890739a3bf0b50caf9a280d13ba1ebaa0
Запущенная в июле 2019 года российско-германская обсерватория «Спектр-РГ» через три месяца успешно вышла на запланированную рабочую орбиту на расстоянии 1,5 млн км от Земли. Первоочередной задачей «Спектра-РГ» станет составление подробной карты видимой Вселенной.
«Одним из важнейших научных событий прошедшего года является долго ожидавшийся запуск российско-германского спутника "Спектр-РГ". Помимо большого количества задач по изучению объектов Вселенной, полученный материал будет использован для более глубокого понимания механизмов образования структур и распределения материи на ранних этапах формирования Вселенной. Основы этой теории были заложены в работах академиков Я. Б. Зельдовича и Р. А. Сюняева. Академик Сюняев является научным руководителем миссии "Спектр-РГ"», — рассказал Ильдар Габитов, профессор факультета математики Университета Аризоны (США), директор Центра фотоники и квантовых материалов Сколковского института науки и технологий, ведущий научный сотрудник Института теоретической физики им. Л. Д. Ландау РАН.
Нобелевская премия по физике за открытие экзопланет Премию за открытие экзопланет и космологические исследования происхождения вселенных получил один из главных теоретиков современной космологии, профессор Принстонского университета Джеймс Пиблз, а также швейцарские астрономы Мишель Майор и Дидье Кело. По мнению членов Нобелевского комитета, оба этих открытия позволили по-новому взглянуть на место человека во Вселенной. «Еще четверть века назад мы совершенно не были уверены, уникальна ли наша Солнечная система, наша планетная система, или таких систем много. Сейчас с уверенностью можно сказать, что планетных систем гигантское разнообразие. Для астрофизики это просто целый новый мир, — рассказал Александр Родин, заведующий лабораторией прикладной инфракрасной спектроскопии МФТИ. — И я не побоюсь сказать, что именно открытие внесолнечных планет ввело науку о планетах в большую науку, потому что до того это была достаточно узкая маргинальная ниша, этим занималось очень небольшое сообщество. А сейчас это мейнстримная прорывная область на стыке астрофизики и геофизики. Фактически в мировой науке создано совершенно новое направление, которое показало гигантский прорыв».
Начало строительства крупнейшего оптического телескопа в мире
https://preview.redd.it/oqoqp6hacrf41.jpg?width=775&format=pjpg&auto=webp&s=2652312d5b5f9c26157e2ce3eab00384bb7dc638
В сентябре официально началось строительство купола здания, где будет расположен телескоп E-ELT (European Extremely Large Telescope, «европейский сверхкрупный телескоп"). Гигантское сооружение возводится в Чили. Самым дорогим и сложным в телескопе будет его огромное зеркало диаметром около 39 м. Эта внушительная деталь, а также две вспомогательные отражающие поверхности помогут телескопу получать детальные фотографии планет вне Солнечной системы, звезд из других галактик, а также искать двойников Земли.
Искусственный интеллект, компьютерные технологии, нейросети «Квантовое превосходство» Google В октябре компания Google сделала заявление о прорыве в создании квантового компьютера. Специалисты техногиганта рассказали, что новая сверхмощная машина способна значительно быстрее проводить вычисления, чем Summit от IBM, который до настоящего момента считался мощнейшим в мире суперкомпьютером. Новый процессор получил название Sycamore. Он состоит из 53 «кубитов» — элементов, которые хранят квантовые биты информации.
«В течение последних 30 лет прилагаются большие усилия в попытках приблизиться к созданию квантового компьютера, способного решать ряд задач, недоступных для компьютеров классического дизайна. Эта задача по-прежнему далека от решения, — пояснил Ильдар Габитов. — Однако в результате больших коллективных усилий зачастую возникает прогресс в смежных областях. В уходящем году коллективом специалистов компании Google было создано устройство Sycamore, в основу которого были положены концептуальные принципы квантовых вычислителей. С помощью этого устройства удалось значительно превзойти компьютеры классического дизайна в решении специально подобранной для сравнения задачи».
Использование нейросетей Распознавание лиц, синтез речи, обработка изображений, выявление неполадок, навигация — лишь малая часть современных систем, в которых заложены нейросети. Сейчас алгоритмы подобной технологии находят все более широкое применение.
Среди ярких достижений в применении нейросетей в 2019 году можно выделить следующие.
  • Американские ученые разработали нейросеть, которая по крику младенца может точно определять его потребность в данный момент.
  • Сотрудники Samsung AI Center-Moscow и специалисты из «Сколкова» создали технологию, позволяющую создать анимацию из нескольких (от одного до восьми) снимков человека
  • Нейросеть Speech2Face, разработанная инженерами Массачусетского университета, способна нарисовать портрет человека лишь по его голосу.
  • Нейросети научились писать тексты (от короткой заметки до целой повести), неотличимые от написанных человеком.
  • Нейросети придумывают новые виды спорта. Так, компания Akqa представила проект Speedgate на основе 7300 правил из 400 видов спорта.
Материаловедение Работы по сверхпроводимости
https://preview.redd.it/fbthhazbcrf41.jpg?width=775&format=pjpg&auto=webp&s=e4246bba487ffb1b4e7b424f2d0a720fe39dfc18
В 2019 году исследователи из Университета Джорджа Вашингтона приблизились к достижению одной из самых популярных целей в физике: сверхпроводимости при комнатной температуре. Они получили новый материал, способный проводить ток без потерь. «Данное открытие оказалось триумфом, оно дает надежду, что комнатная сверхпроводимость — мечта человечества — будет в скором времени реализована. Сейчас совершенно очевидно, что комнатная сверхпроводимость возможна по крайней мере при высоких давлениях. Реально ли создать комнатную сверхпроводимость при нормальном давлении — это еще вопрос. При высоком давлении — такого вопроса уже не стоит», — пояснил Артем Оганов, доктор физико-математических наук, профессор Центра энергетических технологий «Сколтеха», профессор РАН.
Российские физики также активно работают над исследованиями в области сверхпроводимости. В 2019 году группе ученых под руководством Артема Оганова и Ивана Трояна из Института кристаллографии РАН удалось синтезировать новый сверхпроводящий материал: декагидрид тория (ThH10) — с очень высокой критической температурой (161 К).
Антропология
https://preview.redd.it/y2rtmzyccrf41.jpg?width=775&format=pjpg&auto=webp&s=7fbbe5e7f3f37dc4810f9a3f9d83db8cbfe81692
Важным событием в области антропологии в 2019 году стало восстановление по ДНК облика денисовского человека. Внешность предка удалось воссоздать из зубов и кости фаланги мизинца, найденных в пещере в Алтайском крае. Изображение денисовского человека (точно известно, что это была девочка) появилось на обложке авторитетного журнала Cell.
Значительным достижением антропологов стали результаты исследования, проведенного в Университетском колледже Лондона. Ученые колледжа пришли к выводу, что Homo sapiens и неандертальцы были разделены как виды 800 000 лет назад, а не около 430 000 лет назад, как считалось ранее. Как и в случае с денисовцами, британские специалисты проанализировали ДНК с зубов древних людей. Исследование показало, что неандерталец отделился вдвое раньше, чем считалось ранее. Тем не менее два вида продолжали сосуществовать после разделения. Не исключено, что между ними происходила гибридизация.
Климат Одно из ключевых позиций в работе климатологов занимает исследование метана, третьего по распространенности парникового газа после водяного пара и углекислого газа. Понимание механизмов возникновения этого вещества в атмосфере поможет ученым спрогнозировать путь развития климата в будущем. В ходе новых замеров воды с ледников в Гренландии ученые выяснили, что в атмосферу из тающего льда постоянно вымываются огромные массы метана.
Еще одним успехом ученых-климатологов стало обнаружение в американском штате Северная Дакота следов гигантской волны цунами, которую могло вызвать падение крупного астероида на полуострове Юкатан 65 млн лет назад. Известно, что это событие могло привести к исчезновению динозавров и многих других видов животных. Построение цепочки событий прошлого важно для понимания изменений, происходивших в процессе эволюции Земли. Новые данные доказывают, что первым результатом падения астероида было возникновение сильнейшей ударной волны, вызвавшей разрушительное цунами на Северо-Американском континенте.
Чего ждать в 2020 году? По словам ученых, в науке невозможно предсказать открытия, но можно выделить тенденции, которые помогают понять, в каких областях можно ждать заметных событий.
Нет сомнений, что в 2020 году будет происходить дальнейшее развитие сферы искусственного интеллекта, в том числе его внедрение в различные области науки. В медицине стоит ожидать новых методов коррекции генома человека, а также появления новых лекарственных препаратов, помогающих бороться с генетическими заболеваниями и раком. Астрономы ожидают данных наблюдения «Спектра-РГ», которые могут помочь в понимании основ формирования Вселенной и ее структуры. Также в 2020 году ожидается запуск второй очереди миссии «ЭкзоМарс». Аппарат с комплексом приборов, включающих российские, отправится на Марс в июле. Возможен прорыв в понимании источника космических нейтрино высоких и сверхвысоких энергий. Не исключено, что появятся результаты от телескопа NICER на борту Международной космической станции, миссия которого посвящена изучению нейтронных звезд.
Источник
submitted by postmaster_ru to Popular_Science_Ru [link] [comments]


2020.01.27 04:44 XEP-BO-PTy-MEHTA 3 после х комнатной перепланировки узаконивание квартиры

Время ускорять и сталкивать: каким будет новый российский коллайдер Три минуты космоса Вселенная возникла около 13,8 млрд лет назад, и уже вскоре в ней зажглись первые светила. Самые ранние звезды, которые способны различить современные телескопы, появились всего лишь 200 млн лет спустя после Большого взрыва. Но древнейший свет, который мы можем видеть, еще старше и произведен не ими. Это фотоны микроволнового фона, которые сохранились с того момента, когда наш мир остыл до приемлемых температур, около 3000 К. Электроны наконец смогли удерживаться на орбитах вокруг ядер и образовали первые атомы.
До того времени космос наполняла раскаленная плазма, и любой излученный фотон моментально рассеивался в ее непроницаемом тумане. Только через 379 тыс. лет с образованием атомов пространство расчистилось и по нему начало распространяться излучение. Этот реликтовый фон регистрируют радиотелескопы, но все, происходившее ранее, остается за непроницаемой границей, дальше которой нет ни фотонов, ни, соответственно, телескопов, которые могли бы их увидеть.
Инжекторный комплекс способен накачивать кольцевые ускорители легкими частицами и тяжелыми ионами.
Самые первые этапы развития мира, которые предшествовали образованию атомов (рекомбинации), мы изучаем в основном теоретически. Они были краткими, но бурными: уже через 10−43 с после Большого взрыва появились первые частицы, а через 10−35 с Вселенная начала расширяться в экспоненциальном режиме инфляции. Раздувавшийся мир был заполнен невероятно плотной и горячей смесью, состоящей по большей части из кварков (впоследствии они образуют нейтроны и протоны) и глюонов, которые нужны для соединения кварков друг с другом.
Вскоре такое объединение произошло; фазовый переход совершился резко, подобно росту кристаллов в химической грелке. С начала мироздания прошло всего три минуты, а кварк-глюонная плазма исчезла. Сегодня она, возможно, существует лишь в недрах самых плотных объектов, таких как нейтронные звезды. Но на ее месте появились протоны и нейтроны обычной адронной материи, а следом — первые атомы, звезды, галактики.
Все это теория, хотя многие ее положения удается подтвердить на практике. Следы инфляции сохранились в слабых аномалиях реликтового фона, а также в крупномасштабной структуре Вселенной; в огромных наземных коллайдерах получена кварк-глюонная плазма. Однако загадкой остается сам момент «выпадения» из нее адронов. Как и с химической грелкой, этот момент трудно уловить, и даже условия, при которых происходит фазовый переход, в точности неизвестны.
Системы коллайдера работают с такими сильными токами, что для них приходится использовать по‑ настоящему надежные проводники и массивные контакты.
Существующие ускорители частиц для этого не подходят. Так, знаменитый Большой адронный коллайдер возводился для решения совершенно других задач — прежде всего поисков бозона Хиггса. Сталкивающаяся в нем материя оказывается чересчур горячей и недостаточно плотной для попадания в область фазового перехода. Чтобы поймать его, нужны новые инструменты, и работа над ними уже идет. Проходит модернизацию американский RHIC, в Германии возводится новый FAIR. Развернуто строительство и в подмосковной Дубне: Объединенный институт ядерных исследований (ОИЯИ) готовит к работе ускорительный комплекс NICA.
Пять минут частицы У проходной ОИЯИ нас встретил научный сотрудник Лаборатории физики высоких энергий Дмитрий Дряблов. «В общем, ничего нового тут нет, все делается на уже известных принципах, — рассказал он, пока мы шли по обширной территории лаборатории к месту строительства. — Ускоритель, коллайдер, криогенная система — стандартные для таких установок элементы». Даже легендарный первый корпус, где еще в 1950-х был запущен синхрофазотрон ОИЯИ, станет частью комплекса NICA. Круглое здание уже обросло цистернами и компрессорами новой криогенной системы.
Внутри него большую часть занимает стальное «ярмо» магнита синхрофазотрона, свернутый кругом хребет весом в десятки тысяч тонн. Сегодня он сохранил не только историческую ценность: внутри кипит работа. Старые железные плиты служат основой для монтажа сверхпроводящих магнитов. Сбоку подведены выходы инжекционных систем — источников легких частиц (протонов и т. д.) и тяжелых ионов золота для будущего коллайдера. Подхваченные потоком электронов, они будут подгоняться в коротких линейных ускорителях и отправляться в бустер.
Комплекс NICA
211-метровый бустер — первый из трех циклических ускорителей будущего комплекса. За пару секунд в нем сгусток золотых ионов увеличит энергию и дополнительно сожмется, после чего будет передан дальше, в кольцо Нуклотрона, выложенное этажом ниже. Нуклотрон, запущенныйв 1990-х, способен доводить энергию тяжелых ионов до 6 ГэВ на нуклон. Пока идет строительство, он продолжает работу, отправляя частицы в стационарные мишени для исследований новых материалов, радиобиологии и т. д. В NICA эта работа продолжится, но появится и третье, финальное кольцо коллайдера.
Пока что, поднявшись на крышу первого корпуса, мы увидели только обширную и холодную стройку. Однако возведение туннеля уже заканчивается, и вскоре в него лягут две параллельные трубы, по которым в противоположных направлениях помчатся сгустки, банчи частиц. Круг за кругом 500-метровые кольца смогут накапливать их и дополнительно уплотнять, сжимая в тонкие нити диаметром порядка миллиметра. Через 4−5 мин. после получения ионов подготовленные банчи направятся к лобовому столкновению в секциях, на которых установлены детекторы.
Два кольца коллайдера расположатся в круговом тоннеле один над другим, сходясь в павильонах, где будут установлены детекторы MPD и SPD.
Любые манипуляции с частицами в ускорителях и коллайдерах производятся с помощью мощных магнитов. Дипольные магниты удерживают их на кругу, квадрупольные фокусируют банч, сжимая и не позволяя расплыться в стороны. В определенных участках устанавливается высокочастотная ускорительная система, которая срабатывает каждый раз, когда мимо пролетает сгусток частиц. При этом индукция магнитного поля наращивается постепенно: чересчур ускорившиеся и вырвавшиеся вперед ионы получают чуть меньший толчок, а отставшие — наоборот, чуть больший, и они плотнее собираются вместе. Этот метод «автофокусировки» был предложен Владимиром Векслером еще в 1940-х — сегодня его имя носит Лаборатория физики высоких энергий (ЛФВЭ) ОИЯИ, главный проектировщики будущий пользователь NICA.
Один месяц магнита Сама технология сверхпроводящих магнитов для нового коллайдера тоже заслуга ученых из ЛФВЭ. Еще в 1970-х здесь начали испытывать такие магниты, охлаждаемые погружением в криогенную жидкость. Впоследствии был найден более оптимальный вариант — с использованием трубчатого кабеля, в полости которого прокачивается жидкий гелий. Годы моделирования и испытаний позволили добиться оптимальной конфигурации системы. «Кабель типа Нуклотрон — это наше главное ноу-хау», — объяснил «ПМ» младший научный сотрудник ЛФВЭ Михаил Шандов.
Линия по сборке и испытаниям сверхпроводящих электромагнитов.
В центре такого кабеля располагается мельхиоровая трубка, через которую прокачивается гелий, находящийся на границе фазового перехода между газом и жидкостью. В таком состоянии он имеет наибольшую теплоемкость и лучше охлаждает намотанные на трубку нити ниобий-титана, тонкие, как волос. При росте температуры Nb-Ti теряет сверхпроводящие свойства, его сопротивление увеличивается, поэтому он погружен в медную матрицу. Она снимает напряжение с деформированного намоткой ниобий-титана и защищает его от других опасностей.
«Если срыв сверхпроводимости произойдет, то медь сохранит низкое сопротивление, — говорит Михаил Шандов. — Ток сможет уходить в нее — это даст нам время, чтобы «эвакуировать» избыток энергии из системы. Ведь каждый дипольный магнит накапливает ее, грубо говоря, столько же, сколько разогнавшийся тяжелый грузовик. Если вовремя не удалить эту энергию, она разрушит ускоритель». Сверхпроводящий слой прижимается к охлаждающей трубке тугим бандажом из нихромовой лески. Наконец, снаружи все покрывается несколькими слоями электро- и теплоизоляции — полиимидной пленки и стеклоткани. Такой кабель наматывается на стальной шаблон и запекается в печи. Отдельное помещение для намотки кабеля занимает лишь небольшую часть цеха по производству сверхпроводящих магнитов. Основные площади отведены под точные инструменты и испытательные стенды. Первые, «теплые» тесты выполняются при комнатной температуре, после чего производятся сборка, подключение и пайка охлаждающей системы. Она проверяется на герметичность в вакуумной камере, и, если протечек не обнаружено, магнит перемещается на криогенную установку.
Кабель типа Нуклотрон с полым сердечником, служащим для охлаждения.
Здесь магнит выводится на рабочий температурный режим и «тренируется». «Дело в том, что намотка нарушает структуру сверхпроводника, и поначалу не весь его объем переходит в сверхпроводящее состояние. При подаче большого тока неизбежны срывы, микроскопические перемещения обмотки до тех пор, пока все не встанет по местам, — пояснил Михаил Шандов. — Однако постепенно они происходят при все большем токе, магнит «тренируется» для своего рабочего режима. Даже с запасом».
Стенд криогенных испытаний позволяет параллельно испытывать до шести магнитов. На сборку каждого уходят сутки или двое, а вот охлаждение для испытаний может потребовать четырех суток, и столько же необходимо выделить на «отепление» после проведения тестов. Весь производственный цикл занимает около месяца, после чего в магнит устанавливают ионопровод — фрагмент трубки, по которой будут двигаться частицы, — и он закрывается в ожидании транспортировки и окончательного монтажа.
На фото внизу — линия по сборке и испытаниям сверхпроводящих электромагнитов. На заднем плане — установка для проведения криогенных тестов с массивными емкостями жидкого гелия.
Три года ожидание Торжественная закладка первого камня в строительство коллайдера NICA состоялась в марте 2016 года, а уже в ноябре была запущена линия по сборке сверхпроводящих магнитов. Десятки их смонтированы или продолжают монтироваться на бустере, все больше изделий готовы к установке в будущий коллайдер. В общей сложности здесь будет изготовлено почти 600 магнитов для NICA, а также для коллайдера проекта FAIR, возводящегося в Германии.
Тем временем в отдельном здании идет работа над главным детектором комплекса, многофункциональным MPD. Именно в центре этого цилиндра размерами 10 х 7,5 м будут сталкиваться подготовленные ионные батчи, разлетаясь каскадами частиц. Детектору предстоит регистрировать миллиарды событий, передавая в вычислительную систему десятки петабайт сырых данных в год.
Но к их обработке в Дубне готовы: в ноябре Лаборатория информационных технологий ОИЯИ запустила новый суперкомпьютер «Говорун» с пиковой производительностью 860 терафлопс. Ученые уже пользуются его возможностями для моделирования ожидаемых событий и уточнения параметров работы NICA. Первые запуски комплекса запланированы на 2023 год. С одной стороны, это достаточно долгий срок. Нос другой — не такой уж долгий для решения проблемы превращения кварков в протоны и нейтроны, того фазового перехода, который остается загадкой столько, сколько существует Вселенная. Минус три минуты.
submitted by XEP-BO-PTy-MEHTA to ReptiloidsLeague [link] [comments]


2019.12.25 20:17 postmaster_ru Узаконивание после перепланировки 3 х комнатной квартиры

Чего ждать от будущего года в науке. Обзор событий 2020 года от журнала Nature.

Марс атакован
2020 год – это один из тех годов, в которые открываются удачные окна к запуску миссий к Марсу. И в этом году к Красной планете отправится целая флотилия с Земли. Российская ракета должна отправить на Марс сделанную в НПО им. Лавочкина посадочную платформу «Казачок», которая будет нести на себе европейский ровер, названный в честь Розалинд Франклин, женщины, внесшей огромный вклад в открытие двойной спирали ДНК.
Но европейский ровер – не единственный марсоход, который отправится в космос в будущем году. Свой ровер отправят и американцы, и китайцы. Но если NASA отправляет большой аппарат Mars 2020 (наверняка он поменяет название ближе к делу), то Китай посылает свою первую марсианскую миссию «Хуосин-1», которая должна не только сесть на планету, но и отправить в путешествие по поверхности небольшой марсоход.
Более того, этим марсианские миссии не исчерпываются: свою первую марсианскую миссию отправляет и Саудовская Аравия, но это будет «всего лишь» орбитер.
Еще ближнего космоса
Если в этом году Китай стал первой в истории страной, которая посадила аппарат на обратную сторону Луны («Чаньэ-4»), то в 2020 году «Чаньэ-5» должна уже привезти – впервые за много лет – образцы грунта с Луны. Еще две новости будут связаны с внеземным грунтом: японский аппарат Hayabusa-2 должен вернуть на Землю образцы грунта с астероида Рюгу, а аппарат NASA OSIRIS/REx – забрать грунт с астероида Бенну.

Дела галактические
Две ожидаемые новости связаны с нашей галактикой: во-первых, команда астрометрического спутника Gaia должна обновить 3D-карту нашей Галактики, что должно сильно дополнить наши представления о структуре и эволюции Млечного Пути. Плюс та самая группа, что в прошлом году представила первый «портрет» сверхмассивной черной дыры (тогда была показана черная дыра в центре галактики М87) должна обнародовать данные по подобному объекту в центре нашей Галактики.
Ожидает Nature и подробных результатов анализа зарегистрированных в 2019 году гравитационных волн от слияния черных дыр и нейтронных звезд. Странно, но ни в результатах 2019 года, ни в «надеждах» на 2020 год Nature не упоминает российско-германскую обсерваторию «Спектр Рентген-Гамма», а зря: успешный запуск этой обсерватории стал значимым событием в мировой астрофизике, и наверняка в 2020 году уже будут первые серьезные результаты.
Ускорители
Весьма вероятно, что в 2020 году после специального заседания совета CERN в мае в Будапеште будет выделено финансирование на строительство нового коллайдера. Если все пойдет хорошо, то за 21 миллиард евро будет построен 100-километровый ускоритель – в шесть раз мощнее Большого адронного коллайдера.
В Соединенных Штатах Национальная ускорительная лаборатория Ферми близ Чикаго должна представить долгожданные результаты по экспериментту Muon g–2, высокоточного измерения того, как мюоны – более массивные аналоги электронов – ведут себя в магнитном поле. Физики надеются, что небольшие аномалии в результатах помогут выявить ранее неизвестные элементарные частицы.
От себя добавим, что в 2020 году (в конце его, как будет наработан необходимый запас берклия) начнется «охота» на 119-й элемент таблицы Менделева. 150-дневный эксперимент начнется на новой «Фабрике сверхтяжелых элементов» в Дубне.
Сотворение дрожжей
Амбициозные усилия синтетических биологов по созданию полностью искусственных пекарских дрожжей (Saccharomyces cerevisiae) должны быть завершены в 2020 году. Исследователи полностью уже полностью заменяли ДНК гораздо более простых организмов до этого — например, бактерии Mycoplasma mycoides — но сделать это в дрожжевых клетках гораздо труднее из-за их сложности. Эта работа, получившая название «синтетические дрожжи 2.0», представляет собой сотрудничество между 15 лабораториями на четырех континентах. Группы заменили ДНК в каждой из 16 хромосом S. cerevisiae по частям синтетическими версиями.
Дальше в ожиданиях Nature про политику и климат, но мы, пожалуй, про него уже сказали слишком много. Тем более в основном там – про выборы в США и про опасения за то, что на втором сроке Трамп продолжит поход против климатологов и экологов.
«Челомыши» и «челосвиньи»
Специалист в области стволовых клеток Хиромицу Накаути из Токийского университета планирует выращивать ткани из человеческих клеток в эмбрионах мышей и крыс. Затем он собирается пересадить эти гибридные эмбрионы суррогатным животным. Этот шаг был невозможен до вступления в силу нового закона в Японии в марте прошлого года. Накаути и его коллеги также подали заявку на проведение аналогичного эксперимента с использованием свиных эмбрионов. Конечная цель таких исследований - получение животных с органами, которые в конечном итоге могут быть пересажены людям. Но некоторые исследователи считают, что будет безопаснее и эффективнее выращивать органы в лаборатории.
Атака насекомыми и на насекомых
В индонезийской Джакарте завершится крупное испытание методики, которая может остановить распространение лихорадки Денге. Исследователи выпустили на волю комаров, несущих бактерии Wolbachia, которые подавляют репликацию переносимых комарами вирусов, вызывающих лихорадки денге, чикунгунью и Зику, — и позволили этим бактериям распространиться в дикой популяции комаров. Более мелкие испытания в Индонезии, Вьетнаме и Бразилии показали очень хорошие перспективы.
Также многообещающей является вакцина против малярии, которая должна быть опробована на острове Биоко в Экваториальной Гвинее. А в 2020 году Всемирная организация здравоохранения надеется ликвидировать сонную болезнь, или африканский трипаносомоз, как проблему общественного здравоохранения. Это печально известное заболевание переносят мухи цеце (Glossina spp.).
Давление для сверхпроводимости
Физики надеются в 2020 году осуществить свою мечту - создать работающий при комнатной температуре сверхпроводник — хотя пока такие сверхпроводящие материалы работают только при давлении в миллионы килопаскалей. После успеха соединений, известных как сверхгидриды лантана, которые в 2018 году побили все температурные рекорды по сверхпроводимости, исследователи надеются синтезировать сверхгидриды иттрия, которые могли бы быть сверхпроводящими при температурах до 53 °C.
Твердотельная энергия
Крупные и мелкие компании планируют начать продавать солнечные элементы, использующие перовскиты, перспективные материалы, которые могут быть дешевле и проще в производстве, чем кремниевые кристаллы, используемые в обычных солнечных панелях. В паре с кремнием в «тандемных» ячейках перовскиты могут дать самые эффективные солнечные панели на рынке.
Энергетический сектор может достичь еще одной важной вехи во время Олимпийских игр в Токио в июле, когда автогигант Toyota, как ожидается, представит первый прототип автомобиля, работающего на твердоэлектролитных литий-ионных батареях. В этих батареях заменяют жидкость, разделяющую электроды внутри батареи, твердым материалом, увеличивая удельное количество энергии, которую можно хранить в батерее. Твердоэлектролитные батареи служат дольше, но они, как правило, заряжаются медленнее.
Источник
submitted by postmaster_ru to Popular_Science_Ru [link] [comments]